The anisotropic Kerr nonlinear refractive index of the beta-barium borate (β -BaB2O4) nonlinear crystal

نویسندگان

  • Morten Bache
  • Hairun Guo
  • Binbin Zhou
  • Xianglong Zeng
چکیده

We study the anisotropic nature of the Kerr nonlinear response in a beta-barium borate (β -BaB2O4, BBO) nonlinear crystal. The focus is on determining the relevant χ(3) cubic tensor components that affect interaction of type I cascaded second-harmonic generation. Various experiments in the literature are analyzed and we correct the data from some of the experiments for contributions from cascading as well as for updated material parameters. We also perform an additional experimental measurement of the Kerr nonlinear tensor component responsible for self-phase modulation in cascading, and we show that the average value of 14 different measurements is considerably larger than what has been used to date. Our own measurements are consistent with this average value. We also treat data measurements for mixtures of tensor components, and by disentangling them we present for the first time a complete list that we propose as reference of the four major cubic tensor components in BBO. We finally discuss the impact of using the cubic anisotropic response in ultrafast cascading experiments in BBO. © 2013 Optical Society of America OCIS codes: (190.3270) Kerr effect; (160.4330) Nonlinear optical materials; (190.4400) Nonlinear optics, materials; (190.7110) Ultrafast nonlinear optics; (190.5530) Pulse propagation and temporal solitons. References and links 1. L. A. Ostrovskii, “Self-action of light in crystals,” Pisma Zh. Eksp. Teor. Fiz. 5, 331–334 (1967). [JETP Lett. 5, 272–275 (1967)]. 2. J. M. R. Thomas and J. P. E. Taran, “Pulse distortions in mismatched second harmonic generation,” Opt. Commun. 4, 329–334 (1972). 3. R. DeSalvo, D. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 28–30 (1992). 4. G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996). 5. X. Liu, L.-J. Qian, and F. W. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascaded χ(2) : χ(2) nonlinearity,” Opt. Lett. 24, 1777–1779 (1999). 6. K. Beckwitt, F. W. Wise, L. Qian, L. A. Walker II, and E. Canto-Said, “Compensation for self-focusing by use of cascade quadratic nonlinearity,” Opt. Lett. 26, 1696–1698 (2001). #181957 $15.00 USD Received 18 Dec 2012; accepted 17 Jan 2013; published 4 Feb 2013 (C) 2013 OSA 1 March 2013 / Vol. 3, No. 3 / OPTICAL MATERIALS EXPRESS 357 7. S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B 19, 2505–2510 (2002). 8. F. Ö. Ilday, K. Beckwitt, Y.-F. Chen, H. Lim, and F. W. Wise, “Controllable Raman-like nonlinearities from nonstationary, cascaded quadratic processes,” J. Opt. Soc. Am. B 21, 376–383 (2004). 9. J. Moses and F. W. Wise, “Soliton compression in quadratic media: high-energy few-cycle pulses with a frequency-doubling crystal,” Opt. Lett. 31, 1881–1883 (2006). 10. J. Moses and F. W. Wise, “Controllable self-steepening of ultrashort pulses in quadratic nonlinear media,” Phys. Rev. Lett. 97, 073903 (2006). 11. J. Moses, E. Alhammali, J. M. Eichenholz, and F. W. Wise, “Efficient high-energy femtosecond pulse compression in quadratic media with flattop beams,” Opt. Lett. 32, 2469–2471 (2007). 12. M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010). 13. H. Tan, G. P. Banfi, and A. Tomaselli, “Optical frequency mixing through cascaded second-order processes in beta-barium borate,” Appl. Phys. Lett. 63, 2472–2474 (1993). 14. F. Hache, A. Zéboulon, G. Gallot, and G. M. Gale, “Cascaded second-order effects in the femtosecond regime in β -barium borate: self-compression in a visible femtosecond optical parametric oscillator,” Opt. Lett. 20, 1556– 1558 (1995). 15. J. Moses, B. A. Malomed, and F. W. Wise, “Self-steepening of ultrashort optical pulses without self-phase modulation,” Phys. Rev. A 76, 021802(R) (2007). 16. R. DeSalvo, A. A. Said, D. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996). 17. M. Sheik-Bahae and M. Ebrahimzadeh, “Measurements of nonlinear refraction in the second-order χ(2) materials KTiOPO4, KNbO3, β -BaB2O4 and LiB3O5,” Opt. Commun. 142, 294–298 (1997). 18. H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic kerr effect and self-focusing induced damage in secondharmonic-generation crystals,” Opt. Commun. 144, 75–81 (1997). 19. H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals,” Opt. Mater. 15, 237–242 (2001). 20. R. Ganeev, I. Kulagin, A. Ryasnyanskii, R. Tugushev, and T. Usmanov, “The nonlinear refractive indices and nonlinear third-order susceptibilities of quadratic crystals,” Opt. Spectrosc. 94, 561–568 (2003). [Opt. Spektrosk. 94, 615–623 (2003)]. 21. P. S. Banks, M. D. Feit, and M. D. Perry, “High-intensity third-harmonic generation,” J. Opt. Soc. Am. B 19, 102–118 (2002). 22. J. E. Midwinter and J. Warner, “The effects of phase matching method and of crystal symmetry on the polar dependence of third-order non-linear optical polarization,” Br. J. Appl. Phys. 16, 1667–1674 (1965). 23. C. Wang and E. Baardsen, “Optical third harmonic generation using mode-locked and non-mode-locked lasers,” Appl. Phys. Lett. 15, 396–397 (1969). 24. M. Sheik-Bahae, D. Hutchings, D. Hagan, and E. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296 –1309 (1991). 25. S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057 (2004). 26. X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically-poled lithium niobate,” Opt. Commun. 281, 4499–4503 (2008). 27. B. B. Zhou, A. Chong, F. W. Wise, and M. Bache, “Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched quadratic interactions,” Phys. Rev. Lett. 109, 043902 (2012). 28. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2007). 29. D. N. Nikogosyan, “Beta barium borate (BBO) A review of its properties and applications,” Appl. Phys. A 52, 359–368 (1991). 30. M. Bache and F. W. Wise, “Type-I cascaded quadratic soliton compression in lithium niobate: Compressing femtosecond pulses from high-power fiber lasers,” Phys. Rev. A 81, 053815 (2010). 31. C. Langrock, M. M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverseproton-exchanged periodically poled lithium niobate waveguides,” Opt. Lett. 32, 2478–2480 (2007). 32. C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, I. Hartl, and M. E. Fermann, “Supercontinuum generation in quasi-phasematched waveguides,” Opt. Express 19, 18754–18773 (2011). 33. B. Boulanger and J. Zyss, International Tables for Crystallography (Springer, 2006), Vol. D: Physical Properties of Crystals, Chap. 1.7: Nonlinear optical properties, pp. 178–219. 34. R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964). 35. J. J. Wynne, “Optical third-order mixing in GaAs, Ge, Si, and InAs,” Phys. Rev. 178, 1295–1303 (1969). 36. W. Ettoumi, Y. Petit, J. Kasparian, and J.-P. Wolf, “Generalized Miller formulæ,” Opt. Express 18, 6613–6620 (2010). 37. M. Bache, J. Moses, and F. W. Wise, “Scaling laws for soliton pulse compression by cascaded quadratic nonlin#181957 $15.00 USD Received 18 Dec 2012; accepted 17 Jan 2013; published 4 Feb 2013 (C) 2013 OSA 1 March 2013 / Vol. 3, No. 3 / OPTICAL MATERIALS EXPRESS 358 earities,” J. Opt. Soc. Am. B 24, 2752–2762 (2007). 38. M. Sheik-Bahae, A. Said, T.-H. Wei, D. Hagan, and E. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990). 39. T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65, 1739–1741 (1994). 40. A. Gnoli, L. Razzari, and M. Righini, “Z-scan measurements using high repetition rate lasers: how to manage thermal effects,” Opt. Express 13, 7976–7981 (2005). 41. E. Nibbering, M. Franco, B. Prade, G. Grillon, C. L. Blanc, and A. Mysyrowicz, “Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation,” Opt. Commun. 119, 479–484 (1995). 42. I. Shoji, H. Nakamura, K. Ohdaira, T. Kondo, R. Ito, T. Okamoto, K. Tatsuki, and S. Kubota, “Absolute measurement of second-order nonlinear-optical coefficients of β -BaB2O4 for visible to ultraviolet second-harmonic wavelengths,” J. Opt. Soc. Am. B 16, 620–624 (1999). 43. D. Zhang, Y. Kong, and J. Zhang, “Optical parametric properties of 532-nm-pumped beta-barium-borate near the infrared absorption edge,” Opt. Commun. 184, 485–491 (2000). 44. R. A. Ganeev, private communication (2012). 45. J. A. Moses, private communication (2010). 46. H. Guo, X. Zeng, B. Zhou, and M. Bache, “Electric field modeling and self-steepening counterbalance of cascading nonlinear soliton pulse compression,” (submitted to J. Opt. Soc. Am. B), arXiv:1210.5903. 47. C. Bosshard, U. Gubler, P. Kaatz, W. Mazerant, and U. Meier, “Non-phase-matched optical third-harmonic generation in noncentrosymmetric media: Cascaded second-order contributions for the calibration of third-order nonlinearities,” Phys. Rev. B 61, 10688–10701 (2000). 48. M. Sheik-Bahae, “Femtosecond kerr-lens autocorrelation,” Opt. Lett. 22, 399–401 (1997). 49. Y. Fan, R. Eckardt, R. Byer, C. Chen, and A. Jiang, “Barium borate optical parametric oscillator,” IEEE J. Quantum Electron. 25, 1196 –1199 (1989). 50. N. Boling, A. Glass, and A. Owyoung, “Empirical relationships for predicting nonlinear refractive index changes in optical solids,” IEEE J. Quantum Electron. 14, 601–608 (1978). 51. M. Bache, O. Bang, J. Moses, and F. W. Wise, “Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression,” Opt. Lett. 32, 2490–2492 (2007). 52. M. Bache, O. Bang, W. Krolikowski, J. Moses, and F. W. Wise, “Limits to compression with cascaded quadratic soliton compressors,” Opt. Express 16, 3273–3287 (2008). 53. X. Zeng, H. Guo, B. Zhou, and M. Bache, “Soliton compression to few-cycle pulses with a high quality factor by engineering cascaded quadratic nonlinearities,” Opt. Express 20, 27071–27082 (2012). ArXiv:1210.5928. 54. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007). 55. A. Couairon, E. Brambilla, T. Corti, D. Majus, O. de J. Ramı́rez-Góngora, and M. Kolesik, “Practitioners guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199, 5–76 (2011). 56. M. Bache, F. Eilenberger, and S. Minardi, “Higher-order Kerr effect and harmonic cascading in gases,” Opt. Lett. 37, 4612–4614 (2012). 57. C. Chen, B. Wu, A. Jiang, and G. You, “A new-type ultraviolet SHG crystal beta-BaB2O4,” Sci. Sin., Ser. B 28, 235–243 (1985). 58. R. S. Klein, G. E. Kugel, A. Maillard, A. Sifi, and K. Polgar, “Absolute non-linear optical coefficients measurements of BBO single crystal and determination of angular acceptance by second harmonic generation,” Opt. Mater. 22, 163–169 (2003). 59. R. C. Eckardt and G. C. Cattela, “Characterization techniques for second-order nonlinear optical materials,” Proc. SPIE 5337, 1–10 (2004).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of the Third-Order Nonlinear Optical Susceptibilities and Nonlinear Refractive Index In Pbs/Cdse/Cds Spherical Quantum Dot

In this study the third order nonlinear susceptibilities are theoreticallycalculated for an electron confined in an isolated PbS/ CdSe/ CdS spherical core-shellshellquantum dots. Our calculation is associated with intersubband transitions in theconduction band. We used the effective mass approximation in this study which is asimple and straightforward study of the third-order optical nonlineari...

متن کامل

Studies on the Optical, Mechanical and Dielectric Properties of Nonlinear Optical Single Crystal Bis (Guanidinium) Hydrogen Phosphate Monohydrate (G2HP)

Single crystals of nonlinear optical material bis (guanidinium) hydrogen phosphate monohydrate (G2HP) belonging to non centrosymmetric space group P 21c were successfully grown by the slow evaporation method. Optical transmittance and second harmonic generation of the grown crystals have been studied by UV-vis-NIR spectrum and Kurtz powder technique respectively. The transmittance of G2HP cryst...

متن کامل

Ultra-fast 1-bit comparator using nonlinear photonic crystalbased ring resonators

In this paper, a photonic crystal structure for comparing two bits has beenproposed. This structure includes four resonant rings and some nonlinear rods. Thenonlinear rods used inside the resonant rings were made of a doped glass whose linearand nonlinear refractive indices are 1.4 and 10-14 m2/W, respectively. Using Kerr effect,optical waves are guided toward the correc...

متن کامل

L-Histidine tetrafluoroborate: a solution-grown semiorganic crystal for nonlinear frequency conversion.

The crystal structure, refractive indices, and phase-matching conditions for a new nonlinear optical material, L-histidine tetrafluoroborate (HFB), are reported. HFB grows readily, displays favorable mechanical characteristics, and has adequate birefringence to permit phase-matched parametric processes over much of its transparency range (250 nm to 1300 nm). The phase-matching loci and angular ...

متن کامل

Supercontinuum Generation in a Highly Nonlinear Chalcogenide/ MgF2 Hybrid Photonic Crystal Fiber

In this paper, we report the numerical analysis of a photonic crystal fiber (PCF) for generating an efficient supercontinuum medium. For our computational studies, the core of the proposed structure is made up of As2Se3 and the cladding structure consists of an inner ring of holes made up As2Se3 and four outer rings of air holes in MgF2. The proposed structure provides excellent nonlinear coeff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013